radioactive yellow barrel 3d rendering image

Most reactors need to be shut down for refuelling, so that the reactor vessel can be opened up. In this case refuelling is at intervals of 12, 18 or 24 months, when a quarter to a third of the fuel assemblies are replaced with fresh ones. The CANDU and RBMK types have pressure tubes (rather than a pressure vessel enclosing the reactor core) and can be refuelled under load by disconnecting individual pressure tubes.

If graphite or heavy water is used as moderator, it is possible to run a power reactor on natural instead of enriched uranium. Natural uranium has the same elemental composition as when it was mined (0.7% U-235, over 99.2% U-238), enriched uranium has had the proportion of the fissile isotope (U-235) increased by a process called enrichment, commonly to 3.5 – 5.0%. In this case the moderator can be ordinary water, and such reactors are collectively called light water reactors. Because the light water absorbs neutrons as well as slowing them, it is less efficient as a moderator than heavy water or graphite.

During operation, some of the U-238 is changed to plutonium, and Pu-239 ends up providing about one third of the energy from the fuel.

In most reactors the fuel is ceramic uranium oxide (UO2 with a melting point of 2800°C) and most is enriched. The fuel pellets (usually about 1 cm diameter and 1.5 cm long) are typically arranged in a long zirconium alloy (zircaloy) tube to form a fuel rod, the zirconium being hard, corrosion-resistant and transparent to neutrons.* Numerous rods form a fuel assembly, which is an open lattice and can be lifted into and out of the reactor core. In the most common reactors these are about 4 metres long. A BWR fuel assembly may be about 320 kg, a PWR one 655 kg, in which case they hold 183 kg uranium and 460 kgU respectively. In both, about 100 kg of zircaloy is involved.

* Zirconium is an important mineral for nuclear power, where it finds its main use. It is therefore subject to controls on trading. It is normally contaminated with hafnium, a neutron absorber, so very pure ‘nuclear grade’ Zr is used to make the zircaloy, which is about 98% Zr plus about 1.5% tin, also iron, chromium and sometimes nickel to enhance its strength. 

A significant industry initiative is to develop accident-tolerant fuels which are more resistant to melting under conditions such as those in the Fukushima accident, and with the cladding being more resistant to oxidation with hydrogen formation at very high temperatures under such conditions.

Burnable poisons are often used in fuel or coolant to even out the performance of the reactor over time from fresh fuel being loaded to refuelling. These are neutron absorbers which decay under neutron exposure, compensating for the progressive build up of neutron absorbers in the fuel as it is burned. The best known is gadolinium, which is a vital ingredient of fuel in naval reactors where installing fresh fuel is very inconvenient, so reactors are designed to run more than a decade between refuellings. Gadolinium is incorporated in the ceramic fuel pellets. An alternative is zirconium diboride integral fuel burnable absorber (IFBA) as a thin coating on normal pellets.

Gadolinium, mostly at up to 3g oxide per kilogram of fuel, requires slightly higher fuel enrichment to compensate for it, and also after burn-up of about 17 GWd/t it retains about 4% of its absorbtive effect and does not decrease further. The ZrB2 IFBA burns away more steadily and completely, and has no impact on fuel pellet properties. It is now used in most US reactors and a few in Asia. China has the technology for AP1000 reactors.

Close Menu