• Most nuclear electricity is generated using just two kinds of reactors which were developed in the 1950s and improved since.
  • New designs are coming forward and some are in operation as the first generation reactors come to the end of their operating lifetimes.
  • Over 11% of the world’s electricity is produced from nuclear energy, more than from all sources worldwide in 1960.

This paper is about the main conventional types of nuclear reactor. For more advanced types, see Advanced Reactors and Small Reactors papers, and also Generation IV reactors.

A nuclear reactor produces and controls the release of energy from splitting the atoms of certain elements. In a nuclear power reactor, the energy released is used as heat to make steam to generate electricity. (In a research reactor the main purpose is to utilise the actual neutrons produced in the core. In most naval reactors, steam drives a turbine directly for propulsion.)

The principles for using nuclear power to produce electricity are the same for most types of reactor. The energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. The steam is used to drive the turbines which produce electricity (as in most fossil fuel plants).

The world’s first nuclear reactors operated naturally in a uranium deposit about two billion years ago. These were in rich uranium orebodies and moderated by percolating rainwater. The 17 known at Oklo in west Africa, each less than 100 kW thermal, together consumed about six tonnes of that uranium. It is assumed that these were not unique worldwide.

Today, reactors derived from designs originally developed for propelling submarines and large naval ships generate about 85% of the world’s nuclear electricity. The main design is the pressurised water reactor (PWR) which has water at over 300°C under pressure in its primary cooling/heat transfer circuit, and generates steam in a secondary circuit. The less numerous boiling water reactor (BWR) makes steam in the primary circuit above the reactor core, at similar temperatures and pressure. Both types use water as both coolant and moderator, to slow neutrons. Since water normally boils at 100°C, they have robust steel pressure vessels or tubes to enable the higher operating temperature. (Another type uses heavy water, with deuterium atoms, as moderator. Hence the term ‘light water’ is used to differentiate.)

Close Menu